JudoShiai SQL
and
Script Language Manual

For JudoShiai version 2.2

Introduction

You are running an international judo tournament. Suddenly you realize that all the French team's
competitors have their country name misspelled as “FAR”. There are totally 58 French players and you
should print out the sheets within one minute. What to do? You do not have enough time to correct the
error manually, one by one. For a text file you could use a Find & Replace command, but JudoShiai
database is not a text file. Fortunately there exists a more powerful method for database manipulation:
Structured Query Language (SQL). The following SQL command would do the trick:

UPDATE competitors SET country='FRA' WHERE country='FAR'

This document will explain you how to use commonly used SQL commands. Only the simplest
JudoShiai relevant commands are handled. Creation of tables is beyond the scope of this document
since all the tables are created by the JudoShiai program. There are lots of learning material in the net if
you want to try out some of the more complicated commands.

JudoShiai uses SQLite (http://www.sqlite.org/) as its database. There is free software available for
database manipulation. However, in this document we are using the command line and scripting
interface provided by the JudoShiai. Start JudoShiai, open a tournament and from the menu select
Tournament — SQL Dialog.

&3 sQL &)

-

[SELEET * FROM sqlite_master|

| Run Scripk || Repeat Script|

A window will be opened. There is a big space for the results printing and a one line space for the SQL
commands. The default command prints the basic structure of the database. Replace it with the

http://www.sqlite.org/

command
SELECT * FROM competitors

and press Enter. You will have the competitors listed:

index last irst irthyear belt club
10 JOHANSSON Maja 1945 5 Oxeldsunds J
11 ANDERSS0ON Emma 1994 5 Kristinehamn
12 KARLSSCN Julia 19463 6 Borldnge JC
13 OLS50N Ella 1992 f Oxeldsunds JE
14 SVENSS50N Elsa 1945] Kristinehamns
15 PETTERSSON Alice 1901 7 Borlange J
16 BENGTS550N Alva 1994 5 Boras JK B
17 CARLSS0ON Linnea 1991 T Oxeldsunds
18 GUSTAVSS0ON Wilma 1995 5 Kristineha
19 LINDGREN Klara 1943 & Borliange JC
20 NILS50N Lucas 1994 5 Boras JK EF
21 ERIKSS50ON Oscar 1995 3 Oxeldsunds J]
22 LARSS0ON William 1962 & Kristineham
23 PERSSON Elias 1990 7 Borlange JC
24 GUSTAFS550N Hugo 1993 f Boras JK

25 JONS50N Alexander 1995 5 Oxeldsund
26 JANSS50ON Eri 1994 5 Kristinehamns
27 HANSSON Isak 1991 T Borliange JC

28 | JONSSON | Filip | 1992 | 6 | Boras JK | AP
249 PETERSS50N Emil 1995 3 SPIF BF-66

| SELECT * FROM competitors|
[Run ScriptHRepeat Scriptl

Not all the data fits in the window, but you can use scroll bars to move through the results.

Tables

JudoShiai database consists of tables, which store the database’s data/information. Each table has its
own unique name and consists of columns and rows.

The database table columns (called also table fields) have their own unique names and have a pre-
defined data types. While table columns describe the data types, the table rows contain the actual data
for the columns.

Here is an example of a simple database table, containing data. The first row, listed in bold, contains
the names of the table columns:
Table: Customers

FirstName LastName Phone

John Smith 626 123 6789
Mary Jones 375456 7754
William Brown 234765 7783

JudoShiai consists of the following tables:
* ‘“competitors” lists all the competitors

* ‘““categories” lists all the categories

* “matches” contains information about the matches
* “info” is used to save miscellaneous data

» “catdef” lists all the category criteria data

Table “competitors”

Column name Column type Description
index Integer Internal index. Visible in weigh-in notes. Do not change.
last Text Competitor's family name.
first Text Competitor's first name.
birthyear Integer Year of birth.
belt Integer Belt as a numeric value. 0 = unknown, 1 =6. kyu, 2 =5.
kyu, etc.
club Text Name of the club.
regcategory Text Category name the competitor has registered.
weight Integer Weight in grams.
category Text The real category the competitor attends.
deleted Integer 1 = competitor has been deleted.
country Text Name of the competitor's country.
id Text ID field for free use.

Table “categories”

Column name

Column type

Description

index Integer Internal index. Do not change.
category Text Name of the category in text format.
tatami Integer Number of the assigned mat
deleted Integer Not used.
group Integer Number of the group the category belongs to.
system Integer Match system:
1 =pool
2 = double pool
3 = double repechage for 8 competitors
4 = double repechage for 16 competitors
5 = double repechage for 32 competitors
6 = double repechage for 64 competitors
9 = quadruple pool
numcomp Integer Number of competitors in the category.

Column name

Column type

Description

table

Integer

Detailed description of the double repechage:
0 = double repechage (commonly used)

1 = Swedish dubbelt aterkval

2 = Swedish direkt aterkval

3 = Estonian system for D-klass

4 = no repechage

5 = Swedish enkelt aterkval

6 = Spanish doble perdida

7 = Spanish repesca doble

8 = Spanish repesca simple

9 = American modified double elimination
10 = double repechage, one bronze only

wishsys

Integer

Preferred system, if possible:

0 = default for the country

1 = pool

2 = double pool

3 = double repechage

4 = Swedish dubbelt aterkval

5 = Swedish direkt aterkval

6 = Estonian D-klass

7 = no repechage

8 = Swedish enkelt dterkval

9 = quadruple pool

10 = Spanish doble perdida

11 = Spanish repesca doble

12 = Spanish repesca simple

13 = American modified double elimination
14 = double repechage, one bronze only

posl

Integer

Winner's index number (table “competitors”)

pos2

Integer

Silver medalist's index number

pos3

Integer

1% bronze

pos4

Integer

2" bronze or fourth

pos5

Integer

1* fifth

pos6

Integer

2" fifth or sixth

pos7

Integer

1% seventh

pos8

Integer

2" seventh

Table “matches”

Column name

Column type

Description

category

Integer

Internal index for the category.

number

Integer

Number of the match.

Column name Column type Description
blue Integer Index of the blue competitor (table “competitors™)
white Integer Index of the white competitor (table “competitors”)
blue score Integer Scoring for the blue IWYKS):
= shidos + 16*kokas + 256*yukos + 4096*wazaris
white score Integer Scoring for the white (IWYKS).
blue points Integer Winning points for the blue (0, 1, 3, 5, 7, 10).
white points Integer Winning points for the white (0, 1, 3, 5, 7, 10).
time Integer Length of the match in seconds.
comment Integer Comment:
0 =no comment
1 = next match
2 = preparing match
3 = wait
deleted Integer Not used.
forcedtatami Integer Number of the mat this match has been moved to.
forcednumber Integer Number in the match queue.
Table “info”
Column name Column type Description
item Text Name of the data
* Competition
* Date
* Place
* three matches for two
* Time
* NumTatamis
value Text Value of the data
Table “catdef”
Column name Column type Description
age Integer Competitor's maximum age for this category (e.g. 16)
agetext Text Age part of the category (e.g. Men-U17)
flags Integer 1 = male
2 = female
weight Integer Maximum weight in grams
weighttext Text Weight part of the category (e.g. -66).

Column name Column type Description
matchtime Integer Match time in seconds (e.g. 300).
pintimekoka Integer Osaekomi time for koka in seconds.
pintimeyuko Integer Osaekomi time for yuko in seconds.
pitimewazaari Integer Osaekomi time for waza-ari in seconds.
pintimeippon Integer Osaekomi time for ippon in seconds.
resttime Integer Resttime in seconds (e.g. 600).
gstime Integer Golden score time in seconds.

SQL

SQL is a standard language for accessing databases. Most of the actions you need to perform on a
database are done with SQL statements. The following SQL statement will select all the records in the

"info" table:
SELECT * FROM info

Keep in mind that SQL is not case sensitive. It is easier to write
select * from info

but to emphasize the keywords they are written in upper case. Some database systems require a
semicolon at the end of each SQL statement, but JudoShiai doesn't require or allow that practises.

SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data Definition
Language (DDL). The query and update commands form the DML part of SQL:

* SELECT - extracts data from a database

* UPDATE - updates data in a database

* DELETE - deletes data from a database

* INSERT INTO - inserts new data into a database
The DDL part of SQL permits database tables to be created or deleted. It also define indexes (keys),
specify links between tables, and impose constraints between tables. The most important DDL
statements in SQL are:

* CREATE DATABASE - creates a new database

* ALTER DATABASE - modifies a database

* CREATE TABLE - creates a new table

* ALTER TABLE - modifies a table

* DROP TABLE - deletes a table

* CREATE INDEX - creates an index (search key)

* DROP INDEX - deletes an index

You are not going to modify the data definition, so we are concentrating to the DDL part only.

SELECT

The SQL SELECT statement is used to select data from a SQL database table. Please have a look at the

general SQL SELECT syntax:
SELECT Columnl, Column2, Column3,
FROM Tablel

The list of column names after the SQL SELECT command determines which columns you want to be
returned in your result set. If you want to select all columns from a database table, you can use the

following SQL statement:
SELECT *
FROM Tablel

When the list of columns following the SELECT SQL command is replaced with asterisk (*) all table
columns are returned. The table name following the SQL FROM keyword (in our case Tablel) tells the
SQL interpreter which table to use to retrieve the data.

Now we want to select the content of the columns named "last" and "first" from the table

“competitors™:
SELECT last, first FROM competitors

SELECT DISTINCT

In a table, some of the columns may contain duplicate values. This is not a problem, however,
sometimes you will want to list only the different (distinct) values in a table. The DISTINCT keyword
can be used to return only distinct (different) values.

Suppose we want to select only the distinct values from the column named "country" from the table
“competitors” to find out which countries the competitors are from. We use the following SELECT

statement:
SELECT DISTINCT country FROM competitors

We are going to have a list countries, each listed only once.

WHERE

The SQL WHERE clause is used to select data conditionally, by adding it to already existing SQL
SELECT query. Syntax:

SELECT column_ name (s)

FROM table name

WHERE column name operator value

If we want to select all the French competitors from the competitors table we need to use the following
SQL syntax:

SELECT * FROM competitors WHERE country='FRA'

SQL uses single quotes around text values (JudoShiai accepts double quotes, too). Numeric values
should not be enclosed in quotes. For numeric values:

SELECT * FROM competitors WHERE birthyear=1995

With the WHERE clause, the following operators can be used:

Operator Description
= Equal
< Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
BETWEEN |Between an inclusive range

Operator Description

LIKE Search for a pattern
IN If you know the exact value you want to return for at least one of the columns
AND & OR

The AND operator displays a record if both the first condition and the second condition is true. The OR

operator displays a record if either the first condition or the second condition is true. Examples:
SELECT * FROM competitors WHERE first='John' AND last='Smith'
SELECT * FROM competitors WHERE birthyear=1995 OR birthyear=1996

Now we want to select only the persons with the last name equal to “Smith” and the year of birth equal

to 1995 or 1996:
SELECT * FROM competitors WHERE last='Smith' AND (birthyear=1995 OR birthyear=1996)

ORDER BY

The ORDER BY keyword is used to sort the result-set by a specified column. The ORDER BY
keyword sort the records in ascending order by default. If you want to sort the records in a descending
order, you can use the DESC keyword.

SELECT column_ name (s)

FROM table name

ORDER BY column name (s) ASC|DESC

Example:

SELECT * FROM competitors ORDER BY country,last, first

INSERT INTO

The INSERT INTO statement is used to insert a new row in a table. It is possible to write the INSERT
INTO statement in two forms. The first form doesn't specify the column names where the data will be

inserted, only their values:

INSERT INTO table name

VALUES (valuel, value2, value3,...)

The second form specifies both the column names and the values to be inserted:
INSERT INTO table name (columnl, column2, column3,...)

VALUES (valuel, value2, value3,...)

In the next example we insert size of the mat to the table “info™:

INSERT INTO info VALUES ('Size of tatami', '7x7'")

UPDATE

The UPDATE statement is used to update existing records in a table. SQL UPDATE Syntax:

UPDATE table name

SET columnl=value, column2=value2, ...

WHERE some column=some value

Example: We have a club mostly called “Jukara” although its full name is “Vantaan Jukara”. It is very
important to use only one spelling style. The following SQL statement replaces all the names

containing the string “jukara” (case insensitive) to “Vantaan Jukara™:
UPDATE competitors SET club='Vantaan Jukara', country='FIN'
WHERE club LIKE $%jukara%

Notice the operator LIKE and the search pattern %jukara%. That search pattern matches all the strings
containing the word “jukara” (case insensitive).

DELETE

The DELETE statement is used to delete rows in a table. SQL DELETE Syntax:
DELETE FROM table name
WHERE some column=some value

Example: French team has canceled their participation. Remove them:
DELETE FROM competitors WHERE country='FRA'

Delete everything from a table (you cannot undo, be very careful!):
DELETE FROM table

Script language

SQL is handy for the database manipulation. However, it is not good enough for more complicated
tasks. Consider the following scenario: You have a JudoShiai database for a domestic tournament.
Some of the club names are misspelled and there are no country information. You wish to correct the
club names and add an area information. For example in Great Britain the areas could be England,
Wales, and Scotland. Some other country may be divided just to Northern, Eastern, Southern, and
Western areas. Correct club name spelling and the country (area) information ensure that competitors
from the same or closely located clubs wouldn't have the first matches against each other.

The following SQL statements could be used:

UPDATE competitors SET club='Judo Club Ippon', country='North'
WHERE club LIKE S%ippon%

UPDATE competitors SET club='Helsinki Judo', country='South'
WHERE club LIKE $helsinki%

and so forth for each club. However, this not too handy if you have tens of clubs. It would be better to
have a separate text file that has relevant information about the clubs and a script that reads in the club
data and runs the SQL statements.

JudoShiai has a built in script language interpreter that is based on the MOLE BASIC. A script is a
plain text file created using for example Notepad (Windows) or Gedit (Linux). Script file name suffix is
“bas”, for example “my-script.bas”. To run a script

» Start JudoShiai and open a tournament
* Select from the menu Tournament — SQL Dialog
* Click button Run Script and select your script file

* Next time you don't need to select the same file if you click the Repeat Script button

Introduction

To illustrate the nature of script language, we first give a program that multiplies two numbers and
prints the result:

! mass in kilograms

LET m = 2
! acceleration in mks units
LET a = 4

! force in Newtons
LET force = m*a
PRINT force

END

The features of the script language included in the above program include:
* Comment lines begin with ! and continue to the end of line.

* LET, PRINT, and END are keywords (words that are part of the language and cannot be
redefined) and are here given in upper case. The case is insignificant.

* The LET statement causes the expression to the right of the = sign to be evaluated and then
causes the result to be assigned to the left of the = sign. The LET statement can be omitted.

* Script language recognizes only two types of data: floating point numbers and strings
(characters). The first character of a variable must be a letter.

* The PRINT statement displays output on the screen.

* The last statement of the program must be END. It is optional if it is the last command.

Loop structures

Script language uses a FOR/NEXT or WHILE/WEND or DO/UNTIL construct to execute the same
statements more than once. An example of a FOR loop follows:
! add the first 100 terms of a simple series
! Variables are automatically initialized to zero
sum = 0
FOR n = 1 to 100
sum = sum + 1/ (n*n)
PRINT n, sum
NEXT

* The use of the FOR loop structure allows a set of statements to be executed a predetermined
number of times. The index or control variable (n) monitors the number of times the loop has
been executed. The FOR statement specifies the first and last value of the index and the amount
that the index is incremented each time the NEXT statement is reached. Unless otherwise
specified, the index is increased by one until the index is greater than its last value in which
case the program goes to the statement after the NEXT statement. In the example the index n
assumes the values 1 through 100.

* The block of statements inside the loop is indented for clarity.

* The order of evaluation follows the mathematical conventions shared by all computer
languages. Multiplications and divisions are performed first from left to right. Parentheses
should be used whenever the result might be ambiguous to the reader. The parentheses in the
statement, sum = sum + 1/(n*n), are included for clarity. Note that the keyword LET has been
omitted.

* All unassigned variables are automatically initialized to zero.

In many cases the number of repetitions is not known in advance. An example of a WHILE/WEND
loop follows:

! illustrate use of WHILE LOOP structure

sum = 0

n =20

relChg =1

WHILE relChg > 0.0001
n=n++1
newterm = 1/ (n*n)
sum = sum + newterm
relChg = newterm/sum
PRINT n,relChg, sum

WEND

Note the use of the WHILE loop structure to repeat the sum until the specified condition is no longer
satisfied. Example of DO/UNTIL loop:

n=20

DO

PRINT n,n*n
UNTIL n >= 10

Example will print squares for values 0 — 9. Looping stops when n reaches value 10.

Conditional statements

The IF statement lets a program branch to different statements depending on the outcome of previous
computations. An example of the use of the IF statement follows:
x =0
WHILE x < 20
x=x+1
IF x <= 10 THEN f = 1/x ELSE f = 1/ (x*x)
PRINT x, f
WEND

General format for IF statement is

IF condition THEN command/number [ELSE command/number]
ELSE branch is optional. After THEN and ELSE you may have a command or a line number to jump
to. Whole IF statement must be at the same line. Examples:

IF a > 7 THEN x =17 : ¢c = a + 1
You can have many colon separated commands at the same line if there is no ELSE branch.

IF a > 7 THEN x = 17 ELSE ¢ = a + 1 : b = a*8
After the ELSE branch you may have several colon separated commands.
IF a > 7 THEN 110 ELSE 120
110 print “A is greater than 7. Stop the script.”
end
120 x = 17
c=a+1
If condition is true program execution will jump to line 110 otherwise it will jump to line 120. All the
lines can be preceded by a line number but usually it is optional. Line number can be any unique
number and they don't need to be in order. Line numbering is a historical way to edit Basic files using a

teletypewriter.

The decisions of an IF structure are based on (logical or Boolean) expressions which are either true or
false. A logical expression is formed by comparing two numerical or two string expressions by a
relational operator. These operators are given in the next table:

Operator Relation

= Equal

< Not equal

> Greater than

< Less than

>= Greater than or equal
<= Less than or equal
Subroutines

It is convenient to divide a program into smaller units consisting of a main program and subroutines.
Subroutines are called from the main program or other subroutines.

General format for a subroutine call is

GOSUB number
where number is a line number. A subroutine ends to RETURN statement. Example:

FOR 1 = 1 to 10
GOSUB 100

NEXT

i = 313

GOSUB 100

END

! Subroutine to make calculations

! and printing

100

x = 0.78*1

IF i > 100 THEN x = x + i*i + 3.234

PRINT 1, x

RETURN

Subroutine takes variable “i” as its input and calculates a value for variable “x” and prints both. The
subroutine is called from the FOR loop for values 1 — 10 and later for value 313. Line number “100” is
at its own line but it could be in front of the “x = 0.78*1” statement. Note that all the variables are

global: if subroutine changes the variable “i” the change is visible everywhere.

Functions

Functions are subprograms that take arguments and return a value. You cannot create functions
yourself, but you can use some predefined functions. Example:

i=0

WHILE i <= 3.14/2

PRINT i, SIN(i)
i=1i+ 0.2

WEND

Example prints sine values for angles 0 — PI/2 radians at 0.2 rad steps. Function SIN accepts one
argument, angle in radians and it returns sine of given angle. Note that FOR/NEXT statement can STEP
only integer values.

String variables

As mentioned, script language recognizes only two types of variables, numeric and strings. A string
variable may be any combination of characters. String variables end in a dollar sign ($). A string
constant is any list of characters enclosed in quotation marks. An example of an assignment of a string
variable is

fileName$ = "config.dat"

A program illustrating the most common operations on string variables follows:

a$ — unon

b$ — "gOOd"

PRINT Db$

b$ = b$ + a$ + "morning"

PRINT b$

Example will first print “good” and then “good morning”. “+” operator concatenates two strings. There

are many useful string handling functions. Examples:

! VAL returns value of string representing number
bs = "18"

c =5 + VAL (bS)

! print date (no arguments for the function)
PRINT DATES

! print substring "morning"

b$ = "good morning"

PRINT MID$ (b$, 6)

Arrays

An array variable is a data structure consisting of an ordered set of elements of the same data type. One
advantage of arrays is that they allow for the logical grouping of data of the same type, for example the
x and y coordinates of a particle. The dimension of an array is illustrated in the next example:

! array for three numbers

DIM age (3)

! two dimensional array for the first and last names
DIM name$ (3,2)

! ages

age (1) = 23

age (2) = 45

age (3) = 16

! first and last names
name$ (1,1) = "Frank"
name$ (1,2) = "Jones"
name$ (2,1) = "Bob"
name$ (2,2) = "Smith"
name$ (3,1) = "Jane"
name$ (3,2) = "Brown"

! print person data
PRINT "Name ", "Age"

FOR 1 =1 TO 3

PRINT name$ (i, 1);" ";name$(i,2), age (i)
NEXT

* Arrays are defined in a DIM statement and the total number of elements of an array is given in

parentheses. The array variable “age” is an example of one-dimensional array while variable
“name$” is an example of two-dimensional array. You can have at most three dimensions.

* Subscript in an array starts from 1 (age(1) — age(3), name$(1,1) — name$(3,2)).

* An element of an array is specified by its subscript value.

Input/output
The PRINT statement displays output on the screen. Some simple extensions of the PRINT statement
include

PRINT llel, llyll, "Z"
PRINT x,vy,z

PRINT ! skip line
PRINT "time = ";hour;":";min;
PRINT ", date = "; DATES ! time and date at the same line

({34

Script language prints at the current cursor position. Comma (*,”) moves cursor to the next tab,

semicolon (*“;”) continues printing to the current cursor location. Semicolon at the end of line prevents
printing a newline.

The cursor may be moved by the LOCATE statement
LOCATE 0,0 ! upper left corner (column, row; both starting from 0)

The following program illustrates how to open a text file, write to the file, close the file, and read the
file.

! save data in a single column

! channel number #1 is associated with the file

! various options may be specified in OPEN statement
OPEN "testfile.txt" FOR OUTPUT AS #1

FOR i = 1 TO 4

X = i*i

PRINT #1 x ! print column of data
NEXT
! close the file
CLOSE #1

! read data back

OPEN "testfile.txt" FOR INPUT AS #2

FOR i = 1 TO 4
INPUT #2 vy ! print column of data
PRINT y

NEXT

CLOSE #2

END

You can save data in several columns separated by a tab:
PRINT #1 wvarl, var2, table(2)

You can read more that one variable at the same line, if they are
* all numeric

* separated by a tab

INPUT #1 wvarl, table (i), wvar2

It is possible to print mixed numeric and string values to a file, but you can read the whole line as one
string variable only:

num = 4

vehicle = "car"

PRINT #1 vehicle$; " has "; num ; " doors"
later ...

INPUT #1 line$
! 1ine$ has the value "car has 4 doors"

A string may contain what ever characters so it is not clear where one data field ends and another starts.

READ/DATA

One way to incorporate data into a program from a file. Another way to store information within a
program is by using the DATA and READ statements as illustrated below:

DIM x (6)

DATA 4.48,3.06,0.20,2.08,3.88,3.36

FOR 1 = 1 to 6

READ x (1) ! reads input from DATA statement
NEXT i

SQL

SQL queries start with a keyword “SQL”. Example to list all the competitors:

SQL "SELECT * FROM competitors"

Here “SELECT * FORM competitors” is the familiar SQL query. You can compose the SQL statement
from constants and variables:

table$ = "competitors"

lookfor$ = "club, last, first"

weight = 50000
SQL "SELECT "+lookfor$+" FROM "+table$+" WHERE weight<"+weight

A SQL query “SELECT club,last,first FROM competitors WHERE weight<50000” will be done. All
the competitors whose weight is less than 50 kg will be listed. Note that although SQL statement
accepts a string parameter only you can use numeric variable after the “+” since script language
automatically changes the result to a string.

Example

In the beginning of the script language introduction we wanted to correct the misspelled club names

and add area information. Let's start by writing a data file “clubs.txt”. It has three columns:
* Clubs name, for example “Cambridge Judo”
* Astring for SQL operator LIKE, for example “%cambr%”
* An area, for example “England”

The columns are separated by a comma, so the example file looks like this:

Cambridge Judo, $cambr%,England

Barnet Judo, $barnet$%,England
Walderslade Judo Club, 3walder%,England
Stonehaven Judo Club, $stoneh%, Scotland
Peebles Judo Club, $peebles%, Scotland
Llantwit Major Judo Club, %$lantwit%,Wales

The script is listed below:
OPEN "clubs.txt" for INPUT as #1

WHILE NOT EOF #1 ! read while lines left (not End Of File)
GOSUB 100 ! call subroutine at line 100
cmd$ = "UPDATE competitors SET club='"+club$+"',country='"+area$+\
"' WHERE club LIKE '"+likeS+"'"
PRINT cmd$! print command first
SQL cmd$! execute the sgl command
WEND
GOTO 999
100 subroutine starts

1
INPUT #1 line$! read a line

cl = INSTR(line$, ", ") ! find the first comma

IF cl1 = 0 THEN 999 ! no comma found

c2 = INSTR(cl+1l, line$, ",")! find the second comma
IF c2 = 0 THEN 999 ! no comma found

club$ = MIDS (line$, 1, cl-1)! extract the three words

like$ = MIDS (line$, cl+l, c2-cl-1)
area$ = MIDS (line$, c2+1)
RETURN

999 CLOSE #1
END

Script lines explained:
* OPEN line opens file “clubs.txt” for reading. Later on it is addressed as #1.
* WHILE loops as long as there is something to read from the file.
e GOSUB calls a subroutine that reads a line and extracts the variables club$, like$, and area$.

* cmd$ holds the SQL command. It is handy to make a variable first which is easy to print to
check for correctness. Split long lines by writing a backslash (“\”) at the end of the first line.

* After printing it is time to call the SQL command. If everything went well you will see “OK”
printed.

* WEND closes the loop.

* GOTO 999 jumps execution to the end.

¢ Subroutine starts with line number 100.

¢ INPUT reads one whole line from the file.

e INSTR function finds the first occurrence of the comma.

» If the found position is zero there were no comma at the line and it is better to go to the end.

* Second INSTR finds the second comma. Search starts one position after the first finding.

* MID function extracts substrings. Three calls are needed to do the job.

* RETURN jumps script execution back to the next line where this subroutine was called.

* Finally at line 999 the file is closed and execution stops at the END.

Command reference
ABS(number) Returns absolute value of number
ACOS(number) Calculates the arc cosine number/condition

AND number/condition

Logical AND used in conditions or numerical expressions

ASC(string) ASCII code of first letter of string
ASIN(number) Calculates the arc sine

ATN(number) Calculates the arc tan

CHRS$(number) Returns char with value number

CHDIR stringexpression

Change to directory string

CINT(number) Truncated number (NOTE: differs from INT !)

CLS Clears screan (if you're screen supports VT100/VT102/ANSI
codes

CLOSE #number Close file number (number must be 1 or higher)

COS(number) Cosine of number

DATES$ Date in form of "yyyy-mm-dd"

DIM variable(dim, [dim,]
[dim,]..)

Dimension variable.

DO [commands] UNTIL
condition

Execute everything between DO and UNTIL until condition is
true.

ENVIRON stringvariable = string

Sets environment var "stringvariable" using value

ENVIRONS(string) Returns string matching environment var "string"
END End program

EOF #filenumber Returns TRUE if last byte is reached from file
EXP(number) Exponential value of number

FOR variable = beginexpression
TO endexpression

STEP stepxpression

NEXT

Start FOR..NEXT loop with variable as counter, increased by
stepexpression till endexpression is reached

FREEFILE

Returns first free filenumber

GET #filenumber, recordnumber ,
variable

Retrieve record number "recordnumber" from "filenumber" and
place it in "variable"

GOSUB linunumber.. Goto linenumber and preceed when found RETURN
RETURN

GOTO Goto linenumber

HEX$(number) Returns number in hexformat

IF condition
THEN command/number
[ELSE command/number]|

if condition is TRUE run command/jump to line , if it is FALSE
execute command following ELSE (or jump to line).

INPUT [#filenumber]
["Comment";] var [,var [,var...]]

Reads variables from STDIN or file

INSTR([starting,]
searchstring, keyword)

Returns position (counting from 1) of keyword in searchstring
starting at offset 0 or "starting". Returns zero if isn't found.

INT(number) Rounds to biggest integer.
KILL filename Remove file
LET Sets variable. Could be left out.

LEFTS(string , total)

Returns total chars of left side of string

LEN(string)

Returns size of string

LOC #filenumber

Returns value of file position indicator of filenumber

LOCATE column,row

Place cursor on column and row (counting from 0,0 upper left)

LOF Returns length of file
LOG(number) Returns logarithm of number
LOWERS(string) Returns string in lowercase

LSET stringvar = string

Place string on left side of stringvar

LTRIMS(string)

Returns string without spaces on left side of string

MIDS$(string, from [,total])

Returns string from position "from" and maximum of total chars

number MOD number

Modulo

NOT expression

Logical not

NAME filename AS newname

Rename file

OCTS$(number)

Return string of number in octal format

OR

Logical OR

ON variable GOSUB line [,line
[,line ..]]

Depending on value of variable, do GOSUB to first mentioned
line if value=1, second if value=2 and so on

ON variable GOTO line [,line
[line ..]]

Depending on value of variable, do GOTO to first mentioned line
if value=1, second if value=2 and so on

OPEN filename

FOR INPUT|OUTPUT|APPEND
AS #filenumber

[LEN recordsize]

Open filename with recordlen "recordsize" (used by GET and
PUT)

PRINT [#filenumber] "text"|
variable[,;]..[;]

prints variables or text. Semicolon on end prevents printing of
newline, comma prints tab

PUT #filenumber, recordnumber

Gets record number "recordnumber" from file

RANDOMIZE [seed]

Sets seed for random generator, normally TIMER is used for this

REM [remarks]

“'3’

Remark, ignored. Same as line starting with

READ variable [, variable]..
DATA value [, value] ..

Read puts value from DATA into variable, next READ will cause
next value from DATA to be read and so on.

RESTORE

Restore READ pointer. DATA values are read from beginning

RIGHTS$(string , total)

Returns total chars of right side of string

RTRIMS(string)

Returns string without spaces on right side of string

RND(number)

Returns random value between zero and number.

RSET stringvar = string

Place string on right side of stringvar

SEEK #filenumber, position

Place filepointer on new position (NOTE: this is byte oriented,
NOT recordlen oriented)

SPACES$(number)

Returns number of spaces

SWAP variablel , variable2

Swaps two variables

SGN(value) Returns -1 if value is negative, 0 if zero and 1 if positive
SIN(angle) Returns sinus of angle in rad

SQR(value) Returns square root of value

STR$(number) Returns string representation of number

STRINGS(total, Returns string filled with total times charvalue of first char of

charvalue|string)

string.

SYSTEM(command) Execute command

TAN(angle) Returns tangent of angle

TIMER Returns elapsed seconds since last midnight

TIME$ Returns timestring in format "hh:mm:ss"

UPPERS$(string) Returns string in uppercase

VAL(string) Returns value of string representing number

WHILE condition Execute commands between while/wend as long as condition is
WEND true

XOR Logical XOR

	JudoShiai SQL
	and
	Script Language Manual
	For JudoShiai version 2.2
	Introduction
	Tables
	Table “competitors”
	Table “categories”
	Table “matches”
	Table “info”
	Table “catdef”

	SQL
	SELECT
	SELECT DISTINCT
	WHERE
	AND & OR
	ORDER BY
	INSERT INTO
	UPDATE
	DELETE

	Script language
	Introduction
	Loop structures
	Conditional statements
	Subroutines
	Functions
	String variables
	Arrays
	Input/output
	READ/DATA
	SQL
	Example
	Command reference

